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Abstract
The Hubbard model on a two-leg ladder structure has been studied by a
combination of series expansions at T = 0 and the density-matrix renormal-
ization group. We report results for the ground-state energy E0 and spin gap �s

at half-filling, as well as dispersion curves for one- and two-hole excitations.
For small U both E0 and �s show a dramatic drop near t/t⊥ ∼ 0.5, which
becomes more gradual for larger U . This represents a crossover from a ‘band
insulator’ phase to a strongly correlated spin liquid. The various features are
collected in a ‘phase diagram’ for the model.

1. Introduction

The last decade has seen a great deal of interest in spin and/or correlated electron systems on
a ladder structure formed from two coupled chains. This work has been motivated both by
the discovery of real materials with S = 1

2 ions forming a ladder structure [1], and because
ladder systems exhibit a number of interesting and surprising properties (see e.g. the review
of Dagotto and Rice [2]).

Particularly interesting behaviour may be expected if the system includes charge degrees
of freedom. This can be achieved by doping, to create a system of strongly correlated mobile
holes, as in the cuprate superconductors. Systems studied include LaCuO2.5 doped with Sr [1]
and Ca14Cu24O41−δ doped with Sr [3], the latter showing superconductivity under pressure.
The t–J and Hubbard models provide alternate representations of the physics of such systems,
and both have been studied extensively. References to most of the existing work on the t–J
ladder system, as well as the most recent evidence for the form of the phase diagram can be
found in Müller and Rice [4].

We are here interested in the repulsive (U > 0) Hubbard model on a two-leg ladder.
The first study of this system, to our knowledge, was by Fabrizio, Parola and Tosatti [5] who
used a weak-coupling renormalization group approach to investigate the role of the interchain
hopping t⊥ in driving the system out of a Luttinger liquid phase. Earlier work, in this context,
had considered a two-dimensional system of weakly coupled chains [6]. Further work [7, 8]
using bosonization techniques has identified a number of possible phases which the two-leg
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Hubbard ladder may exhibit. In the notation of Balents and Fisher [8], these are denoted as
CnSm where n, m represent the number of gapless charge and spin modes respectively. (Here
n,m = 0, 1, 2 giving nine possible phases.)

Numerical studies of the Hubbard ladder have been carried out for both static and dynamic
properties. The density-matrix renormalization group (DMRG) technique [9] has been used
to calculate both spin and pairing correlations [10, 11], and to calculate the spin and charge
gaps [11, 12] as functions of the parameters of the model. The one-hole spectral function
has been obtained using exact diagonalizations [13] (limited to 2 × 8 sites) and the quantum
Monte Carlo techniques [14]. This latter paper also reports results for two-hole spin and
charge excitations. The spin gap at half-filling, obtained by the DMRG technique applied to a
2 × 32 lattice [11] showed a very sudden decrease near t/t⊥ � 0.5, particularly for small U .
However no finite-size scaling analysis was done and hence the spin gap was not obtained to
high precision. This work was motivated in part by a need to confirm this, and in fact to look
for possible evidence of a phase transition near this point, as well as by a desire to explore the
form of dispersion curves for spin and charge excitations, which have not been obtained by
DMRG methods.

The Hamiltonian of the Hubbard ladder is written as

H = −t
∑
i,a,σ

(c
†
i,a,σ ci+1,a,σ + H.c.) − t⊥

∑
i,σ

(c
†
i,1,σ ci,2,σ + H.c.) + U

∑
ia

ni,a,↑ni,a,↓ (1)

where i labels the rungs of the ladder, a (=1, 2) is a leg index, σ (=↑, ↓) is the spin index
and the operators have the usual meaning. There are several instructive limiting cases. When
U = 0 the electrons are non-interacting and the system has two simple cosine bands of width
4t and separation 2t⊥. The system is metallic for all electron densities n, except for the case
n = 1 (half-filling) and t⊥ > 2t when there is a band gap and the lower (bonding) band is
completely filled. The case is aptly referred to as a ‘band insulator’ [11]. On the other hand
when the interchain hopping t⊥ = 0 (and U > 0) the ladder decouples to two Hubbard chains
for which there are exact, but highly non-trivial solutions. The system is then in a Luttinger
liquid phase, and also an insulator at half-filling.

When both t⊥ and U are non-zero there are no exact results known. However, the form
of the phase diagram can be reasonably inferred from the analytic and numerical calculations
referred to above. A nice discussion is given by Noack et al [11]. In the limit of large U ,
doubly occupied sites are suppressed and the model reduces to a t–J ladder, with parameters
J = 4t2/U , J⊥ = 4t2

⊥/U . The Hubbard ladder has electron–hole symmetry under the
transformation

ci,a,σ → 1 − ci,a,σ . (2)

The phase diagram and properties of the model are thus symmetric about the n = 1 case. We
see manifestations of this in the series for various excitation energies, discussed below.

In this paper we study the Hubbard ladder using both the method of series expansions
[15–17] and the DMRG [9]. The series expansion method is complementary to other
numerical methods and is able to provide ground-state properties, excitation spectra and T = 0
critical points to high accuracy. Another advantage is that one deals with a system in the
thermodynamic limit and finite-size corrections are not needed. We have used this approach
recently in studies of the t–J model on the square lattice [18] and on a two-leg ladder [19], and
we refer the reader to those papers for details of the method and references to previous work.
The emphasis of our work is on the half-filled case n = 1, and on one- and two-hole excitations
from half-filling. The series method is not well suited to handling variable electron density.

We are not aware of any previous series work on the Hubbard ladder. Shi and Singh [20]
have used a somewhat different series approach to study the Hubbard model on the square
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lattice. Their method, which introduces an artificial antiferromagnetic Ising term into the
Hamiltonian, is not appropriate here, as we do not expect any magnetic long-range order in
the ladder system.

This paper is organized as follows. In section 2, we discuss briefly the methods used. In
section 3, we study the system at half-filling. In section 4, we consider the system with one
and two holes. The last section is devoted to discussion and conclusions.

2. Methods

The series expansion method is based on a linked cluster formulation of standard Rayleigh–
Schrödinger perturbation theory. We use a ‘rung basis’ and write the Hamiltonian in the
form

H = H0 + xV (3)

where

H0 = −t⊥
∑
i,σ

(c
†
i,1,σ ci,2,σ + H.c.) + U

∑
ia

ni,a,↑ni,a,↓ (4)

is taken to be the unperturbed Hamiltonian and

xV = −t
∑
i,a,σ

(c
†
i,a,σ ci+1,a,σ + H.c.) (5)

is the perturbation. Thus H0 describes decoupled rungs, and can be solved exactly, while the
intrachain hopping term couples the rungs and is treated perturbatively.

The Hamiltonian for a single rung has 16 possible states. These are shown in table 1.
For U < 3t⊥ the lowest-energy rung state is a spin singlet containing two electrons (state 0
in table 1). At U = 3t⊥ there is a level crossing and the lowest-energy rung state becomes
a doublet S = 1

2 state with a single electron in a symmetric (bonding) state for U > 3t⊥.
The eigenstates of H0 are then direct products constructed from the possible rung states. The
ground state of H0 for the half-filling system (n = 1) is the state that has each rung in a spin
singlet. This is true even for U > 3t⊥, as transferring an electron from a doubly occupied rung
to another doubly occupied rung costs energy.

To compute the perturbation series we fix the values of t⊥ and U and expand in powers
of x ≡ t/t⊥. Without loss of generality we set t⊥ = 1 to define the energy scale. The series
are then evaluated at the desired value of t using standard Padé approximants and integrated
differential approximants [21].

We have also carried out large-scale DMRG calculations [9]. Two different DMRG
algorithms have been employed. Both are ‘infinite-lattice’ algorithms [9] with open boundary
conditions. The first method uses a superblock consisting of the usual system and environment
blocks with two added rungs in the middle. The system/environment blocks are augmented
by one rung at a time and the superblocks always have even numbers of rungs. The second
method is similar except that only one rung is kept in the middle, meaning that the superblocks
have odd numbers of rungs. The second method allows more states to be retained in the
blocks, whilst the even lattices dealt with in the first method are usually considered to be more
desirable for finite-size scaling (FSS) studies. For the first method typical calculations involve
ladders with up to 60 rungs, keeping up to 550 states per block. For the second method the
superblocks studied typically reached 81 rungs and up to 1500 states were retained per block.
It should be noted that the ‘infinite-lattice’ algorithm, despite its name, can be used to obtain
accurate results for finite lattices, as we shall show in what follows.
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Table 1. The sixteen rung states and their energies, where u1 = 1
2

√
[1 + U/

√
(U2 + 16t2

⊥)],
u2 = 1

2

√
[1 − U/

√
(U2 + 16t2

⊥)], λ1 = 1
2 [U − √

(U2 + 16t2
⊥)], λ2 = 1

2 [U +
√
(U2 + 16t2

⊥)], and
0 represents a hole, ↑ (↓) represents an up- (down-) spin electron, � represents an electron pair.

State label Eigenstate Eigenvalue Name

0 u1(|↑↓〉 − |↓↑〉) − u2(|�0〉 + |0�〉) λ1 Singlet

1 1√
2
(|0↓〉 + |↓0〉) −t⊥ Electron–hole bonding (Sz

tot = − 1
2 )

2 1√
2
(|0↑〉 + |↑0〉) −t⊥ Electron–hole bonding (Sz

tot = 1
2 )

3 1√
2
(|�↓〉 − |↓�〉) U − t⊥ Three-electron antibonding (Sz

tot = − 1
2 )

4 1√
2
(|�↑〉 − |↑�〉) U − t⊥ Three-electron antibonding (Sz

tot = 1
2 )

5 |↓↓〉 0 Triplet (Sz
tot = −1)

6 1√
2
(|↑↓〉 + |↓↑〉) 0 Triplet (Sz

tot = 0)

7 |↑↑〉 0 Triplet (Sz
tot = 1)

8 |00〉 0 Hole-pair singlet

9 1√
2
(|�0〉 − |0�〉) U An electron pair and a hole singlet

10 |��〉 2U An electron pair

11 1√
2
(|0↓〉 − |↓0〉) t⊥ Electron–hole antibonding (Sz

tot = − 1
2 )

12 1√
2
(|0↑〉 − |↑0〉) t⊥ Electron–hole antibonding (Sz

tot = 1
2 )

13 1√
2
(|�↓〉 + |↓�〉) U + t⊥ Three-electron bonding (Sz

tot = − 1
2 )

14 1√
2
(|�↑〉 + |↑�〉) U + t⊥ Three-electron bonding (Sz

tot = 1
2 )

15 u2(|↑↓〉 − |↓↑〉) + u1(|�0〉 + |0�〉) λ2 Mixed singlet

3. The half-filled case

3.1. Ground-state energy

We first consider the ground-state energy E0 at half-filling. The series method yields an
expansion of

E0 =
∑
n

an(U/t⊥)(t/t⊥)n. (6)

The series have been computed to order x14 for various U/t⊥. The coefficients for U/t⊥ = 8
are given in table 2, and the other coefficients can be provided on request. The cluster data for
this one-dimensional problem are trivial. The limiting factor is the size of the matrices used in
obtaining the cluster energies. DMRG calculations give the ground-state energy directly for a
given lattice, and finite-size scaling must be used to extract the bulk result.

In figure 1 we show our results for the ground-state energy in the half-filled case versus t
for various U/t⊥ obtained both by series expansions and DMRG calculations. For given t the
energy increases with U as expected. For fixed U the energy decreases slowly with increasing
t . The series are well converged for t/t⊥ � 0.6, but the convergence deteriorates rapidly at
that value. The DMRG calculation is, however, well converged even for larger t and agrees
well with the series results for smaller t . A remarkable feature of the ground-state energy is the
sharp downturn which occurs near t/t⊥ ∼ 0.5–0.6 forU/t⊥ � 1, but which becomes smoother
for larger U . For the case of free electrons (U = 0) the ground-state energy is exactly

E0

Nt⊥
=




−1 t/t⊥ < 1/2

−1 − 2

π

[√
(2t/t⊥)2 − 1 − cos−1

(
t⊥
2t

)]
t/t⊥ > 1/2

(7)
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Table 2. Non-zero coefficients of (t/t⊥)n for the ground-state energy per site E0/N , the spin gap
�s , the one-hole energy �1h(π) and the two-hole energy �2h(π) at U/t⊥ = 8.

n E0/NJ⊥ �s/J⊥ �2h/J⊥

0 −2.360679774998 × 10−1 4.721359549996 × 10−1 4.721359549996 × 10−1

2 −8.944271909999 × 10−2 −7.478019326001 × 10−1 3.577708764000 × 10−1

4 −7.055810863547 × 10−2 2.984040157758 × 10−1 2.117784192484 × 10−1

6 −5.448947627757 × 10−2 2.126553951831 × 10−1 −1.022223221785
8 −3.092587547718 × 10−2 1.030100155673 × 10−1 −1.054110318250 × 101

10 5.006769301333 × 10−3 −2.047688788511 × 10−2 −8.623391111290 × 101

12 4.598641784004 × 10−2 −2.168399847938 × 10−1 −6.784316243528 × 102

14 7.235038860679 × 10−2

n �1h/J⊥

0 −5.278640450004 × 10−1

1 −1.447213595500
2 −5.681892697507 × 10−2

3 4.190688837075 × 10−1

4 −2.186544916675 × 10−2

5 7.778879476658 × 10−1

6 −1.450073605871
7 4.979933826800
8 −1.393584028913 × 101

9 4.115238962605 × 101

and, as mentioned above, the crossover represents a transition from band insulator to a
conductor with gapless charge and spin excitations. We can compare our results for the
ground-state energy with those of Kim et al [22], obtained via a variational method. These
are shown in figure 1. The results are in good agreement for small t/t⊥, but it appears that the
variational method significantly overestimates the ground-state energy for large t/t⊥.

3.2. Spin excitations

We now turn to the excitations, which we have computed directly using Gelfand’s method [17].
The lowest-energy spin-excitation branch results from exciting a rung from a spin singlet
(state 0 in table 1) to a triplet (any of states 5, 6, 7 in table 1). Non-zero t allows this to
propagate coherently along the chain, giving rise to a triplet magnon excitation. Figure 2
shows dispersion curves �s(k) for this excitation for fixed t/t⊥ = 0.5 and various U/t⊥. For
larger t/t⊥ the series becomes too erratic. For all cases the energy minimum occurs at k = π .
As U increases the bandwidth of the spin excitation decreases.

The excitation energy at k = π defines the spin gap �s ≡ �s(π). The raw data are
shown in figure 3, where we plot �s/t⊥ versus t/t⊥ for various U/t⊥. For small t our series
give rather precise estimates. In the limit t = 0 the spin gap is 1

2 [
√
(U 2 + 16t2

⊥) − U ] which
is 2t⊥ for U = 0 and decreases for increasing U . Near t/t⊥ ∼ 0.4–0.5 there is a crossover
and beyond this point the spin gap for large U exceeds that for small U . For U/t⊥ � 2
this crossover becomes very sharp. The series extrapolations would indicate that the spin gap
actually vanishes at t/t⊥ � 0.5−0.6, but we believe that this is an artefact of poor convergence
in this region. It is expected [8, 11] that at half-filling the system will have a finite spin gap
throughout the phase diagram for any U > 0, due to ‘Umklapp’ processes. It is clear however
that the spin gap becomes quite small for t/t⊥ � 0.5.
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Figure 1. The ground-state energy per site as a function of t/t⊥ for U/t⊥ = 0, 0.5, 1, 2, 4, 8.
The solid lines are extrapolations of the series using different integrated differential approximants,
while the points connected by dashed lines are the results of DMRG calculations. Also shown are
the exact results for U = 0, and the results of a variational approach [22] for U/t⊥ = 4, 8 and
t/t⊥ = 0.5, 1 (full circle points).

We have also used our DMRG algorithms to calculate �s . In order to obtain insight
into the potential limitations of DMRG methods for this problem, we consider the finite-size
scaling of �s in the exactly solvable U = 0 case. As mentioned, for U = 0, the system is
gapped for t⊥ > 2t and gapless for t⊥ < 2t . In figure 4 we plot �s as a function of 1/Nrung for
three values of the ratio t/t⊥. For t/t⊥ = 0.49 ( just below the critical ratio), the system has a
small spin gap, and �s scales smoothly to its bulk value, the finite-size corrections vanishing
as 1/N2

rung (as is to be expected for a gapped system with open boundary conditions). For
t/t⊥ = 0.51 ( just above the critical ratio), the gap suddenly begins to display a ‘sawtooth’
dependence on Nrung, with the points of the saw scaling towards zero as Nrung → ∞. This
behaviour becomes more pronounced as we move further beyond the critical ratio. It appears
that multiple crossovers are occurring, with new states crossing over to the bottom of the
spectrum as Nrung increases. These sawtooth oscillations are presumably due to the two-band
structure: every so often it is energetically favourable for an extra electron to be added to the
top band rather than the bottom band, and a crossover occurs. This oscillatory behaviour has
not been exhibited before, as far as we are aware.
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0

0.5

1

1.5

2

Figure 2. Spin-excitation spectra for t/t⊥ = 0.5 and various U/t⊥, obtained from series
expansions.

In order to calculate the bulk spin gap successfully with the DMRG, we must first accurately
calculate�s for a number of lattice sizesNrung, and then extrapolate to the bulk limit, assuming
some scaling ansatz for the finite-Nrung corrections. An example of this is shown in table 3,
where we compare DMRG and exact results for �s for finite lattices and the bulk limit. In

Table 3. Comparison between exact and DMRG results for the spin gap �s/t⊥ for various lattice
sizesNrung for the case ofU = 0, t/t⊥ = 0.49. The DMRG results are obtained using the odd-rung
algorithm, retaining around m = 700 states per block, and including the ground and first excited
states in the density matrix with equal weights. The Nrung = ∞ DMRG result is obtained by
extrapolating the finite-Nrung DMRG results over the range 63 � Nrung � 81, assuming that the
corrections to the bulk result scale as 1/N2

rung.

Nrung DMRG Exact

3 0.614071 0.614071
9 0.136013 0.135929

19 0.064140 0.064131
37 0.046701 0.046694
55 0.043092 0.043083
67 0.042103 0.042091
81 0.041456 0.041438
∞ 0.040055 0.040000
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0

0.5

1

1.5

Figure 3. The spin gap �s versus t/t⊥ for various U/t⊥. The dashed lines are extrapolations of
the series using different integrated differential approximants, while the points connected by solid
lines are the results of DMRG calculations. The filled circles (crosses) denote results obtained
from the even-rung (odd-rung) algorithm.

this case, where the FSS is smooth, it is possible to obtain a reasonable estimate for the bulk
spin gap, the real error being around 0.1%. Two potential problems emerge from our studies
of gapless systems in the U = 0 case for t/t⊥ > 0.5. Firstly, because of the oscillating FSS it
might be difficult to obtain accurate DMRG results for very large lattices in a regime where the
gap is small or vanishing. Convergence of finite-lattice results with the number of states, m,
retained per block, must be monitored over a large range of m-values. For a given lattice size,
improved DMRG estimates can be obtained by using a finite-lattice algorithm [9]. However,
even if highly accurate results are available for a number of lattice sizes, a second and more
pressing problem is that, as a result of the oscillations or erratic FSS, extremely large lattices
may be needed in order to reach a regime where a suitable scaling ansatz can be reliably used
to extrapolate to the bulk limit, as can be seen for the gapless cases in figure 4.

Fortunately, the presence of electron repulsion smooths out the FSS, allowing reliable
DMRG estimates of �s some way beyond t/t⊥ = 0.5. In figure 5, we show the FSS of
DMRG estimates of �s in the U/t⊥ = 1 case for various t/t⊥. We find that up to around
t/t⊥ = 0.55, the corrections to the bulk results for �s scale as 1/N2

rung, as in the gapped
case for U = 0. As t/t⊥ is increased, however, we observe initially oscillatory or erratic
FSS, followed by a crossover to linear dependence of �s on 1/Nrung, as might be expected
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Figure 4. Finite-size scaling of the spin gap �s in the non-interacting case (U = 0) for
t/t⊥ = 0.49 (a), t/t⊥ = 0.51 (b) and t/t⊥ = 0.55 (c). These are exact results for open lattices.

for a system with a small gap. This is illustrated in figure 5 for the t/t⊥ = 0.6 case, where
a crossover to linear behaviour is observed as the lattice size reaches around 30 rungs. As
mentioned, it is important to first assess the DMRG convergence for the finite lattices before
attempting extrapolations. In table 4, we show the DMRG convergence of �s with m for
the odd-rung algorithm, with m ranging from 200 to 1500. It can be seen in this case that
the finite-lattice estimates are sufficiently well converged to afford reliable extrapolations. In
figure 5 results from the odd-rung algorithm with m = 750 are plotted along with results from

Table 4. DMRG convergence of the spin gap �s/t⊥ with m, the number of states retained per
block, for the odd-rung algorithm, where the ground and first excited states are included in the
density matrix with equal weights. The parameters used are U/t⊥ = 1, t/t⊥ = 0.6.

Nrung m = 200 m = 370 m = 580 m = 750 m = 1200 m = 1500

3 0.2371380 0.2371380 0.2371380 0.2371380 0.2371380 0.2371380
7 0.1115510 0.1115030 0.1115060 0.1115040 0.1115010 0.1115010

13 0.0675853 0.0673585 0.0672920 0.0672718 0.0672626 0.0672597
19 0.0475570 0.0475439 0.0475508 0.0475459 0.0475420 0.0475383
25 0.0382940 0.0383589 0.0383977 0.0384008 0.0384094 0.0384077
31 0.0333642 0.0335102 0.0336259 0.0336437 0.0336687 —
35 0.0314530 0.0317155 0.0319372 0.0319716 0.0320189 —
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Figure 5. Finite-size scaling of the spin gap �s for U/t⊥ = 1 and t/t⊥ = 0.54, 0.6, obtained from
DMRG calculations. For t/t⊥ = 0.6, the results from the two different DMRG algorithms: odd
rungs (crosses) and even rungs (full dots), retaining 750 and 800 states per block respectively, are
compared. The inset shows the FSS in the U/t⊥ = 1, t/t⊥ = 0.8 case using the odd-rung DMRG
algorithm with m = 1200.

the even-rung algorithm with m = 800. Good agreement can be seen between the two sets
of results in the linear regime. In order to make bulk estimates for t/t⊥ � 0.6, we assume a
linear scaling ansatz. Presumably, if the resulting estimate is non-zero, as is the case, e.g., for
t/t⊥ = 0.6, there should be a crossover from linear to quadratic scaling for larger lattices still,
in which case the estimates are (tight) lower bounds on the spin gap. For the case of U/t⊥ = 1,
we can carry this out until t/t⊥ reaches around 0.75. Beyond this value, the FSS is too erratic
to permit accurate finite-lattice estimates of the spin gap for sufficiently large lattices. In the
inset to figure 5 this erratic FSS is shown for the t/t⊥ = 0.8 case.

Plots of the DMRG bulk estimates of �s as functions of t/t⊥ are included in figure 3. The
spin gap obtained in this way is indistinguishable from the series values for small t . However,
the DMRG calculation also provides well converged results for larger t provided that U is
not too small. In the U/t⊥ = 2 case, for example, �s undergoes a very rapid decrease up
to t/t⊥ � 0.6, and then flattens out at a small but finite value. The same behaviour was
already seen in the previous DMRG calculation of Noack et al [11]. Noack et al [11] did
their calculation at a fixed lattice size 2 × 32 sites, however, whereas we performed a careful
finite-size scaling analysis to confirm that the spin gap remains finite, rather than scaling to
zero in the bulk limit.
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In the U/t⊥ = 1 case, a similar effect occurs, but the FSS behaviour becomes completely
erratic and the extrapolations fail at around t/t⊥ ≈ 0.75. In figure 6 we depict the region in
the (U/t⊥)–(t/t⊥) plane where the DMRG calculation either fails to give reasonable results
due to erratic FSS, or indicates a very small or vanishing gap, by marking it with an ‘F’. Also
included in figure 6 is the line where the series appear to give a vanishing spin gap. This line
indicates the crossover in the physics of the system from band insulator to strongly correlated
Mott insulator.

0 2 4 6 8
0

0.5

1

Figure 6. Phases and critical lines for the Hubbard ladder at half-filling, in the plane of U/t⊥
versus t/t⊥ (see the text). The phase boundary between spin liquid and band insulator is obtained
approximately by determining the position where the spin gap vanishes according to the series. The
region where two holes bind (do not bind) is marked by B (NB). The region in which the DMRG
calculation fails to determine whether the system has a spin gap, due the irregular finite-size scaling,
is marked by F. Also marked is the region where the one-hole gap is positive/negative.

4. One- and two-hole states

As mentioned in section 1 there is considerable interest in the doped Hubbard ladder where
the electron density n < 1. The series method is not well suited to studying the effect of finite
doping. However, we are able to compute the ground-state and excitation energies when the
system contains one or two holes.

4.1. The one-hole case

In the t = 0 limit a single hole will change one of the singlet rung states into an Sz = 1
2 or − 1

2
bonding state, with an energy increase of −t⊥ − λ1. Finite t will allow the hole to propagate
along the ladder, giving a quasiparticle band. Figure 7 shows the quasiparticle excitation
energy �1h/t⊥ as a function of wavenumber for the case t/t⊥ = 0.5 and various U/t⊥. For
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1

2

Figure 7. Excitation spectra for one-hole bonding states for t/t⊥ = 0.5 and variousU/t⊥, obtained
from series expansions. Also shown are the results from the local rung approximation [14] at
U/t⊥ = 4 (dashed line).

U = 0 we have the exact results

�1h(k) = t⊥ + 2t cos(k) (8)

and this is seen through the vanishing of all higher terms in the series. For the choice t/t⊥ = 0.5
this gives �1h = 0 at k = π . We also show, for comparison, the approximate dispersion curve
for U/t⊥ = 4 obtained by Endres et al [14], through their ‘local rung approximation’. This
appears to overestimate the energy by about 0.4t⊥, although the overall shape is very similar.

For increasingU the energies are depressed and there is a small decrease in the quasiparticle
bandwidth although the overall cosine shape remains. The minimum of the quasiparticle
spectrum occurs at k = π throughout. The energy zero is taken to be the ground-state
energy of the half-filled ladder. Each quasiparticle band crosses the zero level, indicating that
the overall energy of the system is reduced when a hole is created, and this is also marked in
figure 6. Figure 8 shows the ‘quasiparticle gap’ as a function of t/t⊥ for various U/t⊥ obtained
from the series and DMRG methods. Both methods agree up to t/t⊥ ∼ 0.5, beyond which the
series fail to converge. This is the same crossover region as seen in the spin-gap studies. The
DMRG results suggest an upturn or change in slope for larger t/t⊥ and U/t⊥ not too large, as
shown in the figure for U/t⊥ = 1 or 2. Further evidence is shown in figure 9, where we plot
the finite-lattice results versus 1/N2. There is a very distinct upturn from t/t⊥ equals 0.52 to
0.54. By t/t⊥ = 0.6, however, the irregular sawtooth behaviour has set in once again, and no
very reliable finite-size scaling extrapolation could be made. Noack et al [11] saw a similar
break in the behaviour of the charge gap at the crossover for U/t⊥ = 4.
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Figure 8. The one-hole ‘quasiparticle gap’ as a function of t/t⊥ for various U/t⊥. The dashed
lines are the extrapolations of the series using the different integrated differential approximants,
while the points connected by solid lines are the results of DMRG calculations. Also shown are
the exact results for the case U = 0.

4.2. The two-hole case

We would also like to explore the system doped with two holes, to see whether binding occurs
between the holes. From table 1, one can see that at zeroth order (t = 0), the energy gap
for two holes sitting on the same rung is 1

2 [
√
(U 2 + 16t2

⊥) − U ], which is larger than the gap
[
√
(U 2 + 16t2

⊥) − U ] − 2t⊥ for two holes on different rungs. Thus it is not energetically
favourable to have two holes on the same rung. Our present series methods, unfortunately, are
unable to treat the latter case of two holes on separate rungs: so here we restrict ourselves to
exploring whether the former state becomes bound at larger t . One starts from a state with
both holes on a single rung and all other rungs in spin-singlet states; and then the hopping
term allows these holes to move along the ladder, and so generates a dispersion relation for
this state. For example at U/t⊥ = 8, our second-order series result for the dispersion is

�2h(k)/t⊥ = 0.4721 + (1.805 + 1.447 cos k)(t/t⊥)2. (9)

One can see that the minimum energy is at k = π , rather than 0, due to the fact that this is not
the lowest-energy two-hole state. Comparing with the one-hole dispersion relation, we find
no evidence for binding of this state at higher t .

Our series results do not preclude the existence of a two-hole bound state of more complex
structure, and there are indications from other work that this can occur. Noack et al [10, 11]
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Figure 9. The one-hole ‘quasiparticle gap’ �1h(π) for U/t⊥ = 1 and t/t⊥ = 0.5, 0.52, 0.54, 0.6,
as a function of 1/N2

rung, obtained from DMRG calculations.

find, for a 2 × 32 lattice, a small binding energy (Eb � 0.14) for two holes, and a pair
wavefunction which has roughly equal amplitudes on a rung and between nearest neighbours
along the same leg of the ladder. Finite-size effects may be large enough to mask the true
behaviour. Kim et al [22] also discuss pair formation using both the DMRG and a variational
method. They conclude that, at least for large U , holes favour adjacent rungs to minimize the
Coulomb energy. Our series method is unable to explore such complex pair states.

Instead, we have used the DMRG method to compute the minimum energy of the system
with one and two holes, up to ladders of size 2 × L (L = 60), and hence the binding energy
defined by

Eb = 2[E0(L,L − 1) − E0(L,L)] − E0(L − 1, L − 1) + E0(L,L) (10)

where E0(N↑, N↓) is the ground-state energy with N↑ (N↓) up (down) electrons. We show
this as a function of t/t⊥ for U/t⊥ = 2, 8 in figure 10. As can be seen, there is no binding for
small t/t⊥, and the binding energy is zero, corresponding to an unbound, well separated pair
of holes.

For t/t⊥ larger than a critical value (t/t⊥)c, however, hole binding does occur. In fact
as we can see from figure 10, the binding energy Eb increases from zero very rapidly beyond
the critical (t/t⊥)c. The binding is especially strong at small U/t⊥, and weakens as U/t⊥
increases. The boundary for two-hole binding is shown in our ‘phase diagram’, figure 6.

Now the binding of two holes is expected to be a necessary though not sufficient pre-
condition for the phenomenon of phase separation (binding of many holes). Phase separation
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Figure 10. Binding energy Eb of two holes versus t/t⊥ for various U/t⊥, obtained from DMRG
calculations.

is known to occur for the t–J ladder [2, 3], but no evidence for it has yet been found in the
Hubbard ladder, as far as we are aware. It could be interesting to search for this phenomenon
in the region indicated above.

5. Discussion and conclusions

We have made the first application of the series expansion method to the Hubbard model on
a two-leg ladder, and also used the DMRG method to explore its properties at half-filling and
at T = 0. Our series approach starts from a basis of rung states, appropriate for small values
of the chain hopping parameter t , and we obtain perturbation series for various quantities in
powers of t up to typically ten terms. The series are well behaved out to typically t/t⊥ ∼ 0.6.
but the convergence becomes problematical beyond that point. Our results are complementary
to both analytical weak-coupling calculations and other numerical (DMRG and QMC) results.
We also present a detailed discussion of the finite-size scaling behaviour of the model using
the DMRG, in order to check for any phase transitions.

We have calculated the ground-state energy and the triplet spin-excitation energies at half-
filling, and the excitation energies of one-hole and two-hole states relative to the half-filled
case. At half-filling the system is believed to be in a spin-gapped insulating phase [8,11] for all
values of the parameters U, t⊥. Our results confirm those of Noack et al [11], showing a sharp
crossover at smallerU/t⊥ from strongly correlated spin liquid or Mott insulator (as for a simple
Hubbard chain) to ‘band insulator’ behaviour as t⊥ is increased. The spin gap becomes very
small in the spin-liquid region. We have performed a careful finite-size scaling analysis using
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the DMRG to show that the spin gap remains finite, however, rather than scaling to zero in the
bulk limit, at least for those moderate values of U/t⊥ where a definite statement is possible.
In other words, no evidence of a second-order phase transition was found for finite U/t⊥.

A single hole doped into the Hubbard ladder will propagate as a well defined quasiparticle,
and we have computed the dispersion relation for this quasiparticle. It was found that the lowest-
energy two-hole state is not amenable to our series approach; but the DMRG calculations show
that two holes become strongly bound at larger t/t⊥. This raises the question of whether phase
separation will occur in this region, as it does in the t–J ladder [23]. This question must await
future investigations.
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